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ABSTRACT

This paper considers a Hybrid Genetic Algorithm (HGA) for University
Examination Timetabling Problem (UETP). UETP is defined as the as-
signment of a given number of exams and their candidates to a number of
available timeslots while satisfying a given set of constraints. Solutions
for uncapacitated UETP are presented where five domain-specific knowl-
edge in the form of low-level heuristics are used to guide the construction
of the timetable in the initial population. The main components of the
genetic operators in a GA will be tested and the best combination of the
genetic operators will be adopted to construct a Pure Genetic Algorithm
(PGA). The PGA will then hybridised with three new local optimisation
techniques, which will make up the HGA; to improve the solutions found.
These new local optimisation techniques will arrange the timeslots and
exams using new explicit equations, if and only if, the modification will
reduce the penalty cost function. The performance of the proposed HGA
is compared with other metaheuristics from literature using the Carter’s
benchmark dataset which comprises of real-world timetabling problem
from various universities. The computational results show that the pro-
posed HGA outperformed some of the metaheuristic approaches and is
comparable to most of the well-known metaheuristic approaches.
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1. Introduction

In the last few decades, the timetabling problem has received special at-
tention from the operations research community. Timetabling concerned in
assigning objects (e.g. people, vehicles, machines or exams) subject to a set of
constraints in a pattern of time or space. There are many examples of schedul-
ing and timetabling such as scheduling of employees’ shifts and working hours,
transit route for urban transit scheduling problem, constructing timetables for
exams and courses in educational institutions, scheduling of sports or business
events, etc. The University Examination Timetabling Problem (UETP) is a
classic combinatorial optimisation problem which has to be tackled by univer-
sities from all over the world. This problem shares a common framework which
is to allocate exams to conflict-free exam timeslots (i.e. no student has to sit
for more than one exam simultaneously).

Nowadays, many universities are introducing the concept of cross-faculty.
This will allow the students to have much greater flexibility in enrolling courses
that they want to take as well as giving a much greater choice to them. The
exams timetable will be more difficult to construct as the number of enrolment
at the university increases every year. The administration department of the
university needs to solve the timetabling problem in order to plan their courses
or exams by allocating these events to specific timeslots, rooms and lecturers.

The investigation conducted by Burke et al. (1996a) found that the con-
straints in the domain of UETP may vary from one university to another.
The hard constraints’ costs must be satisfied under all circumstances for the
timetable to be feasible whereas for the soft constraints, these are desirable to
satisfy but not absolutely important. Due to the large variety of the problem
presented, the common hard constraints cost to be considered are as follows:

1. certain exams need to assign to specific timeslots or can only be held in
a limited set of timeslots.

2. certain exams must satisfy pair wise schedule.

3. certain exams may require specific rooms.

4. there may be restrictions on students’ individual exam timetables.

146 Malaysian Journal of Mathematical Sciences



i
i

“mjms-template” — 2016/6/16 — 16:33 — page 147 — #3 i
i

i
i

i
i

Hybrid Genetic Algorithm for UETP

5. large exams should be scheduled earlier in the timetable.

6. student must not sit for more than x exams in any y consecutive timeslots.

UETP can be categorized as either capacitated or uncapacitated problem.
In the capacitated UETP, rooms to allocate the exams are taken into consid-
eration and the number of students sitting for the exams must not exceed the
available seat of the rooms, while in the uncapacitated UETP, room capacities
are not considered. In this paper, we concentrate on finding the solutions for
uncapacitated UETP.

The main goal of this paper is to design a Hybrid Genetic Algorithm (HGA)
for solving uncapacitated UETP. We investigate how a Pure Genetic Algorithm
(PGA) when hybridised with three new local optimisation techniques can im-
prove the overall quality of the solution. The first technique focuses on inserting
a scheduled exam to a new timeslot. Second technique is concerned with swap-
ping of two scheduled exams between two different timeslots while the third
technique deals with interchanging the timeslots in the timetable. These new
local optimisation techniques will arrange the timeslots and exams using new
explicit equation, if and only if, the modification will reduce the penalty cost
function. The remainder of this paper is organised as follows: Section 2 ex-
plores the solution approaches in solving the UETP. In Section 3, the PGA
where each main component used in a GA is explained. Section 4 discusses
the HGA used in this paper where three new local optimisation techniques are
discussed in detail. The computational results and discussions are presented in
Section 5. Finally, the conclusion is given in Section 6.

2. Solution Approaches

Early approaches have been widely applicable to solve the UETP since
1960’s using the concept of heuristic ordering (Carter et al., 1996). These
methods firstly order exams using heuristics knowledge and then scheduled
the exams sequentially into feasible timeslots so that no exam in the timeslots
will clash with each other (Carter, 1986). Table 1 shows several sequencing
strategies listed by Carter et al. (1996).
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Table 1: Sequencing Strategies by Carter et al. (1996)

Heuristics Descriptions
Random Ordering (RO) Exams to be scheduled are chosen at random.

Largest Degree (LD) Exams are scheduled according to the number of con-
flict the exams have with other exams. Exams with
the highest number of conflicts will be scheduled first.

Largest Enrolment (LE) Exams are scheduled according to the number of stu-
dents enrolled for the exams. Exams with the highest
number of students enrolled will be scheduled first.

Largest Weighted Degree
(LWD)

Similar to LD, but exams are weighted according to
the number of students involved. Exams with the
highest number of students conflict will be scheduled
first.

Saturation Degree (SD) The next exams to be scheduled are based on the num-
ber of available timeslots for the exams at the current
time. Exams with the least number of available times-
lots will be scheduled first.

Burke et al. (1996b) studied a Memetic Algorithm for UETP where each
solution in the population is represented as a number of memes that contained
information on which exams are scheduled and where the exams will be carried
out for a particular timeslot. A weighted roulette wheel is used to construct the
initial population to choose which timeslot to schedule for each exam. Light and
heavy mutation operators followed by hill climbing operator are employed in the
initial phase in order to find fast and good solutions. Another contribution of
this paper is the introduction of a new benchmark dataset of the UETP namely
the Nottingham dataset which involved 805 exams with 7,896 students.

Reis and Oliveira (1999) proposed a constraint logic programming language
ECLiPSe to a large UETP of the University of Fernando Pessoa in Porto with
more than 3500 students, from 21 different courses correspond to 314 exams.
Four main labelling strategies are employed. In the first strategy, the algorithm
dealt with the timeslot variables, then the room variables and finally with invig-
ilator variables. For second strategy, they started with room variables, followed
by timeslot variables and ended with invigilators variables. The third strategy
started with timeslot variable, continued simultaneously to room and invigi-
lator variable labelling while for the last strategy, all three types of variables
were dealt simultaneously. For typical UETP, the best strategies are the first
and the third strategies. The results obtained by the algorithms showed three
times better than the manual solutions.
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In the same year, Chu and Fang (1999) compared the performance of a GA
and a Tabu Search (TS) to allocate 10 exams into 12 timeslots (in 3 days)
which involved 50 students. In the GA, they used the same representation
as reported in Corne et al. (1994) where each timetable represented as an
array and the length of the chromosome represented as a list of number of
exams to be scheduled. They employed one point crossover by swapping the
timeslots. For the TS, the same representation is used as in the GA where
20 constructed timetables are produced and sorted according to their fitness
value. The solutions for the next iteration are produced by choosing the best
solution and randomly swapped two exams timeslots. Best solution found in
this step will be selected to test with two basic mechanisms in their TS: tabu
restrictions and aspiration criteria. The results showed that the TS produced
better solution compared to the GA. However, the GA approach managed to
produce several near optimal solutions.

Casey and Thompson (2003) proposed a two-phased approach in GRASP
technique to solve the UETP. In the first phase, initial solution is generated
using the greedy approach achieved by ordering the examinations according
to one of the low-level heuristics (LD, LWD, LE and SD). Roulette wheel
selection is used to choose the top exams in the list for the next exam to be
scheduled. A backtracking with tabu list is employed to eliminate the clashes.
Tabu list is used to forbid cycling during the search process. In the second
phase, Simulated Annealing (SA) is used with high starting temperature and
fast cooling to minimize the soft constraint costs. The proposed algorithm
is applied to the benchmark datasets and the results obtained show that the
SD heuristic employed in the first phase is able to produce the best timetable
compared to other low-level heuristics.

Burke and Newall (2004) presented two variants of local search algorithms:
a time-predefined variant of SA and a basic variant of linear decreasing of
the upper boundary value (ceiling degrading) where the algorithm accepts the
worse candidate solutions during the execution as its fitness is less than or equal
to the given upper boundary value. The basic geometric cooling algorithm is
employed to make SA run for a definite number of moves and terminate until
reaching a temperature. Comprehensive experiments are carried out to analyze
the trade-off between the time and solution quality on problems of different
size. The results obtained showed that the approaches significantly outperform
when compared to the previous best result on the Carter’s and Nottingham’s
benchmark dataset problems.

Kendall and Hussin (2005) developed a TS based hyper-heuristic framework
to solve UETP where the hyper-heuristic module is used to design and test the
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strategies that help in making an intelligent decision and guide the search to
either improve or diversify the exploration of the search space. Constructive
heuristic is used to construct the initial solution followed by a randomization
of heuristics to explore the neighbourhood for a better solution. Tabu list
is used to store information about heuristics while tabu duration decide how
long a heuristic should remain tabu. The algorithms are tested on Carter’s
benchmark dataset. Even though the results obtained are not able to beat the
best result amongst the literature but their approach able to produce a quality
solutions.

In the same year, Asmuni et al. (2005) made some modifications to the
sequential construction algorithm applied by Carter et al. (1996). They applied
the combination of two ordering heuristics out of three ordering heuristics (LD,
LE and SD) simultaneously to all the exams and find the clash free timeslots
with least penalty cost to schedule all exams into the timetable. In the case
where several timeslots is proposed, the exam will be scheduled to the last
available timeslot in the list. Fuzzy model are serve to represent the knowledge
that are imprecise, uncertain, or unreliable where the fuzzy functions are used
to give the evaluation for the ordered exams.

Abdullah and Burke (2006) developed a basic methodology of Ahuja-Orlin
to construct both capacitated and uncapacitated UETP where the approach
is based on an improved graph representation of solution adjacency. In this
study, a very large neighbourhood structure is combined with the technique of
identifying improvement. A modified shortest path label-correcting algorithm
is used to identify the improvement move by finding cycle exchange operations.
The computational experiments showed that when defining a neighbourhood
structure, cyclic exchange operation is superior when compared to simply using
two exchanges. In this approach, exams are divided into cells and each cell
is assigned a timeslot. Their approach is tested on the Carter’s benchmark
problem and is evaluated against the other methodologies in the literature.
The results obtained outperform some of the best known results.

In 2008, Asmuni (2008) presented fuzzy methodologies to solve both uni-
versity course and exams timetabling problem. In the construction stage,
fuzzy techniques are combined with multiple heuristic orderings to generate the
timetable at the beginning. In the multiple heuristic ordering, different com-
binations are examined using two and three heuristic ordering simultaneously.
The methods are tested on the Carter’s benchmark datasets. Experimental re-
sults showed that the usage of fuzzy multiple heuristic orderings with parameter
tuning obtained better results compared to the single heuristic orderings.
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Pillay and Banzhaf (2008) proposed a developmental approach based on cell
biology for the uncapacitated problem. A mature organism which is presented
as the solution of the timetable problem is developed through the process of
cell division, cell interaction and cell migration. Process of scheduling starts
with the creation of a single cell and exams were scheduled according to SD.
If there is no feasible timeslot to slot in the exams, cell division will occur
where cell is divided into two daughter cells, one cell contained the clash exam
and another cell contained the rest of the exams. In cell migration, a cell is
moved from one region of organism to another. Two types of cell migration are
studied: random migration and stimulus-driven migration. In each iteration,
cell interaction occurred in order to decrease the soft constraints cost. Their
approach is tested on Carter’s benchmark dataset and the results obtained are
comparable with those produced by other biologically inspired algorithm.

Abounacer et al. (2010) developed a hybrid Ant Colony Optimization (ACO)
algorithm with the complete local search with memory (CLM) heuristic to re-
solve the UETP. CLM is a new neighborhood search approach that uses mem-
ory structures where all explored solutions are recorded in a list to prevent the
exploration of solutions that have been already visited. The exams are sorted
using LD and LE strategies. Their proposed algorithms produced comparable
results using Carter’s benchmark datasets.

Pillay and Banzhaf (2010) employed two phase approaches in solving UETP
by using GA and proved that the effectiveness of using domain specific knowl-
edge in the form of heuristics during the construction of timetable in the first
phase. They also introduced new low-level heuristics namely highest cost (HC).
They found that the combination of HC with SD heuristics and used the LWD
to break ties when performing a Pareto comparison of exam has produced the
best result. While in second phase, the GA refines the solutions found in the
first phase over a set number of generations by using mutation operator with
the aim of minimising the soft constraint cost of the solutions.

In 2012, Pillay (2012) studied the effect of different representations against
the quality of the timetable. The evolutionary algorithm (EA) implemented
with each of the representation. By using tournament selection and one point
crossover, they evaluated three representations; fixed length heuristic combina-
tion (FHC), variable length heuristic combination (VHC) and N-time heuristic
combination (NHC) with 50 runs each. The author found that VHC represen-
tation performed better than NHC and FHC representation. An EA- based
hyper-heuristics which combined with all three representation namely CEA
was tested and found that it performed better than EA- based hyper-heuristics
using FHC, VHC and NHC.
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Abdul-Rahman et al. (2014) investigated an adaptive decomposition strat-
egy that grouped the exams into two sets: difficult and easy sets to solve the
UETP. In the construction stage, difficult set are filled with the exams that
cannot be scheduled and cause the infeasibility to the timetable while the ex-
aminations that feasible to be scheduled are assigned in the easy set. A new
subset (called the boundary set) is introduced in the easy set to apply the shuf-
fling strategies that shuffled the given ordering of exams. In the difficult set, the
quality of the timetables could be improved by merging or swapping the bound-
ary set. Roulette wheel selection is employed in order to shuffle the ordered
exams. The proposed algorithm is tested on the Carter’s benchmark problems
and the results obtained are comparable to existing constructive approaches.

3. Pure Genetic Algorithm

In this section, series of experiments were carried out to find the best com-
bination of each of the genetic operators in the proposed PGA for solving
uncapacitated UETP. When using a PGA to solve an optimization problem,
the most important part is to choose a suitable gene representation for the
problem. The choice made is for the chromosome to be an ordered list of
numbers. Figure 1 illustrates an example of the integer representation used
for this problem. Given there are 10 timeslots (ti, i = 1, 2, . . . , 10) with 20
exams (ej , j = 1, 2, . . . , 20) to be scheduled. Exams e3, e5 and e7 are assigned
to timeslot t1, exams e1, e4 and e18 are assigned in timeslots t2, and exams e13

and e14 are assigned to timeslot t10.

Figure 1: Gene Representation of PGA for Uncapacitated UETP

For initial population, two types of initialization methods which are the
random initialization method and the low-level heuristic construction method
are applied. In the first method, exams are randomly ordered before assigned
to feasible timeslots. For the second method, domain specific knowledge in the
form of heuristic is used to guide the construction of the timetable. The low-
level heuristics used in this paper are LD, LWD, LE, SD and HC. By referring
to the results of Pillay and Banzhaf (2010), they found that the combination of
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SD and HC with the used of the LWD and LE heuristics to break ties produced
the best results. Hence, in this paper, we propose to use 10% of the total exams
to be scheduled with the combination of LD, LWD and LE, while the rest are
the combination of SD and HC in order to focus on reducing the value of the
penalty cost. In the case of ties, the exam which is appeared first in the list is
given the priority to be scheduled first.

In a real world situation, it is impossible to fulfil all the soft constraints, but
the quality of a timetable will be improved by minimizing these violations. In
this paper, the soft constraint cost considered is the spread of the exams that
have common students throughout the exam period so that the students may
have enough time to do their revision. The following proximity cost function
defined by Carter et al. (1996) is used to calculate the quality of the solutions
for the soft constraint cost:

C =

M−1∑
i=1

M∑
j=i+1

proximity
(
tei , tej

)
· comij

N
, (1)

where

proximity
(
tei , tej

)
=

{
2(5−∆t) if 1 ≤ |∆t| ≤ 5
0 otherwise . (2)

Equation 1 represents the proximity cost function on the average penalty
per student where M is the total number of exams, N is the total number of
students and comij is the total number of common students between exams
i and j. Equation 2 calculates the proximity value between two timeslots
where exams i and j are scheduled in timeslots tei and tej respectively, and
∆t = |tei − tej |,where i 6= j. For instance, a proximity value of 16 is assigned if
a student has two exams consecutively (i.e. ∆t = 1), the value of 8 is assigned
if a student has two exams with a gap timeslot in between, and so forth. The
aim of this study is to minimize the value of Equation 1. Note that a student
is not allowed to sit for two exams simultaneously.

In this study, a computational comparison is made among the three stan-
dard selection mechanisms to select parents from the population. There are
roulette wheel, rank and tournament selections. For crossover operator, three
types of crossover operators are used namely one-point, two-point and position-
based crossovers. However, some modifications are required for the above men-
tioned crossovers in order to produce feasible solutions. For the illustration pur-
poses, Figure 2 below is used to represent the parents for these three crossover
operators. Each parent consists of 10 exams scheduled in 5 timeslots.
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Figure 2: Selected Parents for Crossover

In the modified one point crossover (M1PC) (see Figure 3), a random
crossover point is selected to be the crossover point between the parents. The
symbol “|” indicates the randomly chosen crossover point. Then, the first part
of the Parent 1 and 2 (before the crossover point) are copied into new Offspring
1 and 2. The remaining part of Offspring 1 and 2 are then filled with the sec-
ond part of Parent 2 and 1 respectively. Figure 3 shows the offspring that are
produced after the interchanging process, where the crossover point is between
gene 3 and gene 4.

Figure 3: Infeasible Offspring 1 and Offspring 2 of M1PC

Note that after interchanged the second part of the parents, both offspring
do not represent feasible solutions, where all exams must be scheduled in the
timetable (i.e. no missing exams) and each exam must only be scheduled once
(i.e. no duplication of exams). For instance, in Offspring 1, duplication of
exams have occurred in exams e6 and e8, while the missing exams are e7 and
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e9. Therefore, for the second part of Offspring 1, the duplicated exams (e6 and
e8) must be removed from the timetable and the missing exams (e7 and e9)
must be rescheduled back in the timetable. The following steps are performed
in order to produce feasible offspring for the M1PC:

Step 1: Identify and remove the duplicated exams in the second part of Offspring
1.

Step 2: Reschedule the remaining exams (in the second part) to the earlier times-
lots (in the second part) based on the feasibility.

Step 3: Find the missing exams in the Offspring 1 and reschedule them in the
second part based on the feasibility. Hence, the feasible Offspring 1 is
generated.

Step 4: Repeat Step 1-3 for Offspring 2.

Figure 4 shows a possible example of the feasible solutions for Offspring 1
and 2.

Figure 4: Feasible Offspring 1 and Offspring 2 of M1PC

In the modified two-point crossover (M2PC), two crossover points are ran-
domly selected within the two parents to form three separate parts of timetable.
We refer back to Figure 2 for the illustration purposes of this crossover. For
instance, the first crossover point is between gene 1 and gene 2 while the second
crossover point is between gene 3 and gene 4. Then, the first and the third
part of Parent 1 and 2 are copied into Offspring 1 and 2 while the second part
of Offspring 1 and 2 are then filled with the second part of Parent 2 and 1
respectively. Figure 5 below shows the offspring that are produced after the
interchanging process.
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Figure 5: Infeasible Offspring 1 and Offspring 2 of M2PC

There are cases after the interchanging, both the offspring do not represent
feasible solutions. For Offspring 1, duplication of exam has occurred in exam
e9 while exams e5 and e6 are missing. Similarly in Offspring 2, the duplicated
exams are e5 and e6 while the missing exam is e9. Therefore, the similar steps
as in M1PC are taken in order to produce feasible solutions. Figure 6 shows a
possible example of feasible solutions for Offspring 1 and Offspring 2.

Figure 6: Feasible Offspring 1 and Offspring 2 of M2PC
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The modified position-based crossover (MPBC) has the similar concept as
M1PC. The MPBC aims at preserving the schedules of the exams as much as
possible. It is best illustrated by using an example based on Figure 2. Assumed
the crossover point between Parent 1 and 2 is between gene 3 and gene 4. The
first part of Parent 1 and 2 are copied to Offspring 1 and 2 while the second
part of the Offspring 1 and 2 are copied from Parent 2 and 1 respectively. Both
offspring are identical to M1PC as shown in Figure 3.

The difference between the M1PC and MPBC is on the step of rescheduling
the exams in the second part of Offspring 1 and 2 in order to produce feasible
solutions while preserving the schedules of the exams. Instead of reschedule
the remaining exams in the second part to the earlier timeslots as in Step
2 of M1PC, the MPBC will keep the remaining exams in the second part of
the offspring at the same position in the timeslots. Figure 7 shows a possible
example of feasible solutions for Offspring 1 and 2.

Figure 7: Feasible Offspring 1 and Offspring 2 of MPBC

A computational comparison is also made among four types of standard mu-
tation operators. The best operator that gives the best result will be adopted
to be the mutation operator in the proposed PGA. These mutation operators
are inverse, insertion, exchange and scramble mutations. Lastly, in replace-
ment strategies, three types of standard replacement strategies are tested to
identify the best replacement strategy that gives the best result to be the re-
placement strategy in the proposed PGA. These replacement strategies are:
en-bloc, elitism and steady-state replacement.

A series of initial computational investigation is performed based on three
datasets extracted from the Carter’s benchmark problems. These datasets are
chosen based on the total number of registered students (i.e. low, medium and
high) at their respective institutions. The datasets are sta-83 (611 students),
lse-91 (2726 students) and kfu-93 (5349 students). For each computational
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experiment of the genetic operators, each dataset is run for five times to get
the average values. Note that the population size for the proposed algorithm is
kept constant at 500 chromosomes and the execution of the PGA is halted once
the algorithm reached 100 generations. These are the standard values used for
the GAs in the literature. At each stage of the development, the ‘winner’ of the
experiment will be directly adopted into the PGA before proceed to the next
experiment. The tables of computational results for the genetic operators of
PGA are given in Appendix A. For each table of results, the first two columns
give the dataset and the number of run. The next few sets of three columns
refer to the genetic operators being tested in each experiment. For each genetic
operator, the entries in the first column report the penalty cost (Equation 1),
the second column report the total timeslot, and the last column give the CPU
time (in second) of 100 generations. For each dataset, the final row gives the
average value of five runs. The bold face figures represent the best solution
obtained for each dataset. Based on the initial investigation, the final scheme
of the best performed genetic operators for the proposed PGA is presented in
Figure 8.

Figure 8: Final Scheme of the Best Performed Genetic Operators for the Proposed PGA

4. Hybrid Genetic Algorithm

This section describes the improvement made on the PGA by proposing
the improvement phase of the algorithm. The PGA will hybridise with three
new local optimisation techniques, which will make up the HGA, to improve
the solution found by PGA. The techniques will make alterations to the orig-
inal timetables. This involves moving or swapping a scheduled exams, ek, or
interchanging the timeslot, ti. First technique focuses on inserting a sched-
uled exam to a new timeslot, second technique concerns with swapping of two
scheduled exams between two different timeslots, and the third technique con-
cerns with interchanging the timeslots in the timetable. We introduce new
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explicit equations for each technique. During the implementation of the HGA,
one of the three new local optimisation techniques will be randomly selected
to be executed after the mutation operator is performed. This is due to the
expensive computational runtime of the local optimisation technique for large
dataset. With the introduction of the randomisation in selecting the new local
optimisation technique in the HGA, the algorithm will performed better than
a PGA with a fixed local optimisation technique (see, Table 4, Section 5.3).
The descriptions of each technique are given in the following subsections.

4.1 Move Exam (ME)

In this approach, the algorithm will move an already scheduled exam, ek,
(in timeslot tq) to a new position (in timeslot tp) if it results in reducing
the soft constraints cost and at the same time improve the overall quality
of the timetable. To achieve this, a new Exam/Timeslot Conflict Matrix is
constructed where each element, σk,i, stores the value of the total number of
common students between the exam ek with all other exams scheduled in a
timeslot ti. Note that, a timetable is feasible if σk,i = 0, (k = 1, 2, · · · , E),
where E is the total number of exams to be scheduled. In other words, the
value of σk,i is obtained from the following equation:

σk,i =

ni∑
s=1

ck,ei,s , (3)

where
ei,s = exam es (s = 1, 2, · · · , ni) scheduled in timeslot ti, and ni is

the total number of exams in the timeslot ti.
ck,ei,s= number of common students between exam ek with the exam

ei,s scheduled in timeslot ti.

New equations are introduced to calculate the cost of inserting the exam
ek to the new timeslots, tp in the timetable. Let A be the total penalty cost
of the timetable without exam ek been scheduled in the timetable. Equation 4
below calculate the total penalty cost, Q of the original timetable with exam
ek is scheduled in timeslot tq.

Q = A+

5∑
m=1

25−m (σk,q+m + σk,q−m), (4)

where
σk,q+m and σk,q−m represent the total number of common students
between exam ek and all other exams scheduled in timeslot tq+m and
tq−m respectively.
q +m ≤ T and q −m ≥ 1.
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The exam ek is inserted into a new timeslot tp, if and only if, σk,p = 0. The
new total penalty cost, Q1 is given by the following equation:

Q1 = A+

5∑
m=1

25−m (σk,p+m + σk,p−m), (5)

where
σk,p+m and σk,p−m represent the total number of common students
between exam ek and all other exams scheduled in timeslot tp+m and
tp−m respectively.
p+m ≤ T and p−m ≥ 1.

By subtracting Equation 4 from Equation 5, we have:

Q1 −Q =

5∑
m=1

25−m (σk,p+m + σk,p−m − σk,q+m − σk,q−m), (6)

where
p+m ≤ T , p−m ≥ 1, q +m ≤ T and q −m ≥ 1.

If Q1−Q < 0 (the total penalty cost when exam ek scheduled in the timeslot
tp is lower than the total penalty cost in the timeslot tq), then the exam ek
is inserted into the timeslot tp and this will lead to a decrease in the total
penalty cost of the entire timetable. The algorithm is executed based on the
first improvement move, i.e. the algorithm is halted once an improved solution
is found. If there is no improving move found after all the exams are checked,
the ME algorithm will be terminated and it is assumed that the timetable is
optimum based on this technique.

4.2 Swap Exam (SE)

During the implementation of this technique, two exams from two different
timeslots will swap their position in the timetable if it leads to a decrease in the
soft constraint cost. Let exams ei and ej are initially scheduled in the timeslot
tp and tq respectively. A∗ be the total penalty cost of the timetable without
exams ei and ej been scheduled in the timetable. Equation 7 calculates the
total penalty cost, R of the original timetable with exam ei and ej are scheduled
in the timeslots tp and tq respectively:

R = A∗ +

5∑
m=1

25−m (σi,p+m + σi,p−m + σj,q+m + σj,q−m), (7)
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where
σi,p+m and σi,p−m represent the total number of common students
between exam ei and all other exams scheduled in timeslots tp+m and
tp−m respectively.
σi,q+m and σi,q−m represent the total number of common students
between exam ei and all other exams scheduled in timeslots tq+m and
tq−m respectively.
p+m ≤ T, p−m ≥ 1, q +m ≤ T , and q −m ≥ 1.

Now, assumed that these two exams can be swapped, i.e. σi,q = σj,p = 0.
Then, the new total penalty cost, R1 after the swap where exams ei and ej
are scheduled in the timeslots tq and tp respectively is given in the following
equation:

R1 = A∗ +
5∑

m=1

25−m (σi,q+m + σi,q−m + σj,p+m + σj,p−m). (8)

Similar to the ME algorithm, by subtracting Equation 7 from the Equation 8,
the result is shown below:

R1−R =

5∑
m=1

25−m (σi,q+m + σi,q−m + σj,p+m + σj,p−m − σi,p+m − σi,p−m − σj,q+m − σj,q−m),

(9)

where
p+m ≤ T, p−m ≥ 1, q +m ≤ T , and q −m ≥ 1.

If R1 − R < 0, then the two exams (ei and ej) between timeslots tp and
tq are swapped. The algorithm is executed based on the first improving move.
Similar to ME technique, the timetable is assumed to be optimal based on the
SE technique if there is no improving found after all the exams are tested.

4.3 Interchange Timeslot (IT)

This approach involves interchanging of two timeslots in the timetable if
it results in an improvement in the quality of the timetable (i.e. reduces the
soft constraints cost). Note that this approach is differs from other mutation
operators where the interchanging of timeslots in mutation occurred at random.
For this purpose, a new Timeslots Conflict Matrix is introduced, where each
element µi,j stores the value of the total number of common students between
two timeslots, ti and tj . Note that, µi,j = 0 if i = j or both timeslots do
not have students in common. This approach differs from the previous two
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techniques where the feasibility check on the exams is not required since all
exams within a timeslot are interchanged with all exams from another timeslot.
We introduced the following equations to calculate the cost of interchanging
these two timeslots. Equation 10 below calculates the total penalty cost, P of
the complete timetable before interchanging ti and tj .

P = 16 (µ1,2 + µ2,3 + · · ·+ µi−1,i + µi,i+1 + · · ·+ µj−1,j + µj,j+1 + · · ·+ µT−1,T )+
8 (µ1,3 + µ2,4 + · · ·+ µi−2,i + µi−1,i+1 + µi,i+2 + · · ·+ µj−2,j + µj−1,j+1 + µj,j+2 · · ·+ µT−2,T )+
4 (µ1,4 + µ2,5 + · · ·+ µi−3,i + · · ·+ µi,i+3 + · · ·+ µj−3,j + · · ·+ µj,j+3 + · · ·+ µT−3,T )+
2 (µ1,5 + µ2,6 + · · ·+ µi−4,i + · · ·+ µi,i+4 + · · ·+ µj−4,j + · · ·+ µj,j+4 + · · ·+ µT−4,T )+
(µ1,6 + µ2,7 + · · ·+ µi−5,i + · · ·+ µi,i+5 + · · ·+ µj−5,j + · · ·+ µj,j+5 + · · ·+ µT−5,T ) .

(10)

Now, assumed that the timeslots ti and tj is interchanged. The new penalty
cost function, P1 after the interchange is given as:

P1 = 16 (µ1,2 + µ2,3 + · · ·+ µi−1,i + µj,i+1 + · · ·+ µj−1,i + µi,j+1 + · · ·+ µT−1,T )+
8 (µ1,3 + µ2,4 + · · ·+ µi−2,j + µi−1,i+1 + µj,i+2 + · · ·+ µj−2,i + µj−1,j+1 + µi,j+2 · · ·+ µT−2,T )+
4 (µ1,4 + µ2,5 + · · ·+ µi−3,j + · · ·+ µj,i+3 + · · ·+ µj−3,i + · · ·+ µi,j+3 + · · ·+ µT−3,T )+
2 (µ1,5 + µ2,6 + · · ·+ µi−4,j + · · ·+ µj,i+4 + · · ·+ µj−4,i + · · ·+ µi,j+4 + · · ·+ µT−4,T )+
(µ1,6 + µ2,7 + · · ·+ µi−5,j + · · ·+ µj,i+5 + · · ·+ µj−5,i + · · ·+ µi,j+5 + · · ·+ µT−5,T ) .

(11)

By subtracting Equation 10 from Equation 11, we have:

P1−P =

5∑
m=1

25−m (µi−m,j + µj,i+m + µj−m,i + µi,j+m − µi−m,i − µi,i+m − µj−m,j − µj,j+m),

(12)

where
i > j, i−m ≥ 1, i+m ≤ T, j −m ≥ 1, and j +m ≤ T .

If P1 − P < 0, we can conclude that the total penalty cost is improved
by interchanged the timeslots ti and tj . The steps are repeated until no more
interchange that can lower the penalty cost function. If there is no improving
move after all the timeslots are checked, the IT algorithm is terminated and
we assumed that the timetable is optimum based to this technique.
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5. Computational Experiments

5.1 Experimental Designs

All proposed algorithms are coded in ANSI-C using Microsoft Visual C++
6.0 as the compiler and run on a laptop computer running on Window 7 as the
operating system with Intel Core i5, 4 GB memory. To measure and compare
the solution quality of the proposed algorithms, the proximity (penalty) cost
function given in Equation 1 is used. Note that the population size for all
proposed algorithms is kept constant at 500 chromosomes, a standard value
used for the GAs in the literature.

The problem instances are taken from the Carter benchmark dataset as
shown in Table 2. This dataset is introduced by Carter et al. (1996) which
consist of 12 real-world exam timetabling problems from three Canadian high
schools, five Canadian, one United Kingdom and one mid-east universities. Var-
ious important information to construct the timetable such as the total number
of periods available for each dataset, the total number of exams involved, total
number of students registered for the exams and the conflict density can be
obtained from this table.
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5.2 Computational Results of PGA

In this subsection, we first present the computational results of the proposed
PGA for UETP. For statistical significance, 30 runs were performed for each
dataset. The execution of the PGA will be terminated when the penalty cost
failed to improve in 30 consecutive generations. Table 3 shows the best, average
and the worst penalty costs for 12 datasets produced from the proposed PGA.
Note that all computational experiments of PGA in this subsection produced
the same number of timeslots for each run of each dataset as reported in Table
2. Hence, the results for the number of timeslots for each dataset are omitted.
The first column gives the name of the dataset. The next three columns refer
to the best, average and worst penalty cost values for each dataset respectively.
The entries in the average column reports the average penalty cost of 30 runs.

Table 3: Computational Results of PGA for Carter Benchmark Dataset

Dataset Best Average Worst
sta-83 162.85 163.45 164.60
yor-83 39.91 45.44 47.27
ear-83 30.99 43.58 47.71
lse-91 13.73 14.91 15.76
ute-92 30.57 32.14 34.09
hec-92 12.33 12.96 13.67
tre-92 8.11 10.49 11.26
kfu-93 16.80 17.47 18.30
rye-93 12.99 13.90 14.79
car-91 6.63 6.95 7.12
car-92 5.70 5.89 6.12
uta-92 4.40 4.61 4.77

From the results shown, the proposed PGA managed to get the solutions
with a small gap between the best and the worst solutions over 30 runs except
for dataset ear-83 and tre-92. This shows that the proposed PGA is robust
in finding the solutions. However, some modifications are needed in order to
improve the final solutions so that our proposed PGA is comparable with other
algorithms proposed in the literature. To achieve this, the PGA is hybridised
with the three local optimisation techniques proposed in Section 4, which make
up the HGA.
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5.3 Computational Results of HGA

In this subsection, we report the computational experiments of the proposed
HGA. The computational results are presented in Table 4. The performance of
the three new local optimisation techniques, i.e. ME, SE, and IT are tested by
combining with the PGA one by one. Their performances are also compared
with the HGA, where in every generation of the HGA algorithm, one of the
three new techniques will be randomly selected to be executed after the muta-
tion operator is performed. The first column gives the dataset. The next five
sets of two columns refer to the PGA, PGA with ME, PGA with SE, PGA
with IT, and HGA algorithms respectively. For each algorithm, the entries in
the first column report the best penalty cost and the second column report
the average penalty cost. The bold face figures represent the best and average
penalty cost values obtained for each dataset by the algorithms.

From the computational results, the PGAs with fixed local optimisation
technique achieved a mixed degree of success as compared to the PGA. In
general, the PGAs with fixed optimisation technique improved the solutions
slightly in most dataset. When compared the combination of PGA with a
fixed local optimisation techniques, the combination of PGA with IT gave
better penalty cost values. The improvements of the solutions quality are
more significant for the HGA as compared to the PGA where an element of
the randomisation is introduced in selecting a local optimisation technique to
be executed after the mutation operator is performed. The results proved
the robustness of the HGA when dealing with the Carter benchmark dataset.
Hence, we can conclude that HGA is the best algorithm where it produced the
best penalty cost for all datasets. HGA also showed the best average’s penalty
cost value for all the datasets except for yor-83.
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5.4 Comparisons of Different Methodologies

To our knowledge, in the literature, only one study applied GA to the Carter
benchmark and it was conducted by Pillay and Banzhaf (2010). Another study
by Pillay (2012) applied the EA to the Carter dataset. Thus, in this final
subsection, to expand the comparison, we first compare the performance of
proposed HGA with other GA/EA in the literature that applied to the same
Carter datasets. Then, for the second comparison, the performance of HGA
is compared with the benchmark results from the literature using different
methodologies. The computational results of the first comparison are presented
in Table 5. The first column gives the dataset. For each algorithm, the entries
report the best penalty cost value. The bold face figures represent the best
penalty cost value obtained for each dataset by the algorithms. The comparison
is made based on the penalty cost value of the best solution (timetable) found
by the algorithms. In this study, the comparison of the CPU runtime is not
considered because for different studies, varying computing powers are used to
run the algorithms.

Table 5: Comparative Computational Results of HGA and other EA Approaches

Dataset HGA Pillay & Banzhaf (2010) Pillay (2012)
IGA CEA VHC NHC

sta-83 158.94 157.81 157.69 157.82 157.39
yor-83 38.28 39.33 39.63 40.00 39.84
ear-83 36.97 35.87 35.95 35.94 36.64
lse-91 11.67 10.89 10.76 10.83 10.81
ute-92 26.71 27.24 26.95 27.13 27.16
hec-92 10.79 11.50 11.27 11.21 11.26
tre-92 8.64 8.38 8.43 8.37 8.48
kfu-93 14.85 14.37 14.12 14.13 14.21
rye-93 9.83 9.30 9.23 9.23 9.25
car-91 5.43 4.92 4.95 4.95 4.93
car-92 4.54 4.22 4.22 4.19 4.18
uta-92 3.36 3.35 3.33 3.37 3.32

From the results presented, it can be seen that the HGA performed well
for yor-83, ute-92 and hec-92 datasets. For other datasets, the results obtained
by HGA are comparable to the performance of other EA approaches. There
is no clear winner on which GA/EA approach that performed the best. Each
approaches obtained the best solution for at most three dataset.

For the second comparison, Table 6 compares the best results obtained from
the proposed HGA in comparison with other published results on benchmark
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datasets from the literature. The first column gives the dataset. For each
algorithm, the entries report the best penalty cost value. The results that are
underperformed as compared to the HGA are highlighted in red.

From the results shown in Table 6, although the proposed HGA does not
yield the best result for any of the benchmark dataset, but its performance
is clearly competitive to the others methodologies. It is also worth pointing
out that the proposed HGA managed to produce feasible solutions for all 12
datasets. In addition to that, the HGA produces better penalty cost values
when compared to the TS implementation by Di Gaspero and Schaerf (2001)
for all 12 datasets. Our proposed HGA also has outperformed 11 out of the 12
datasets for three other methodologies which are construction approach based
on adaptive decomposition and ordering by Abdul-Rahman et al. (2014), fuzzy
multiple heuristic orderings by Asmuni et al. (2005) and genetic programming
for auction based scheduling by Bader-El-Den and Fatima (2010). However,
Bader-El-Den and Fatima (2010) did not solve the ute-92 and rye-93 datasets.
The HGA also produces better penalty cost value than Burke et al. (2009)
on seven datasets and has the same results for the other three datasets. The
methods of GHH by Burke et al. (2007) outperformed our method on two
datasets. For both methodologies implemented by Burke ((Burke et al., 2007)
and (Burke et al., 2009)), they did not solve the rye-93 dataset. For other
methodologies, in general, the proposed HGA produces better results on at
least two of the datasets.
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6. Conclusions

The overall goal of this paper is to investigate the strength of HGA in
solving UETP. This is done in two phases: construction phase (generate feasible
timetables) and improvement phase (improve the quality of timetable found in
the first phase by reducing the penalty cost value of the problem). After the
initial population is generated, the best combination of the proposed PGA
operators are examined first before the PGA is hybridised with three new local
optimisation techniques to construct the HGA.

In the construction phase, the most challenging part is to construct a fea-
sible solution (timetable) with the required number of timeslots where feasible
timetable is important to avoid students from sitting for more than one exam
simultaneously. In this paper, two types of construction methods which are
random initialisation and low-level heuristic construction method were used to
generate the feasible timetables in the initial population. The computational
results showed that the low-level heuristic construction method performed bet-
ter than random initialisation method.

In the improvement phase, a HGA with three new local optimisation tech-
niques is used to spread the students’ exams throughout the available timeslots
given by the institution in order to give extra gaps between the exams. In
the first technique, an exam is moved to another timeslot, if and only if, the
movement caused a reduction in the penalty cost function. Second technique
considered swapping two exams whereas the third technique is interchanging
the timeslots until no further improvement to the timetable can be achieved.
New explicit equations are introduced in this paper to calculate the effect of
altering the exams/ timeslots in the timetables.

The proposed HGA is demonstrated on the 12 uncapacitated UETP of
the Carter’s benchmark datasets to measure the efficiency of the algorithm.
The computational experiment found that by applying one local optimisation
technique randomly from these three new local optimisation techniques at each
generation gave better penalty cost value which is calculated in terms of how
well the exams with common students are spaced. We compared the proposed
HGA with other metaheuristics which used the same benchmark datasets from
the literature. The results shown that the proposed HGA outperformed some
of the metaheuristic approaches and comparable within the range to most of
the metaheuristic approaches.
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Appendix A

Table 7: Comparative Computational Results of Random Initialisation and Low-Level Heuristic
Construction Method

Dataset Run
Random Low-Level Heuristic

Penalty Total CPU Time Penalty Total CPU Time
Cost Timeslot (sec) Cost Timeslot (sec)

sta-83

I 192.06 14 0.06 186.92 13 0.62
II 191.89 14 0.10 187.25 13 0.55
III 192.34 14 0.10 186.76 13 0.60
IV 192.61 14 0.07 187.07 13 0.57
V 192.56 14 0.07 186.95 13 0.58

AVE 192.29 14 0.08 186.99 13 0.58

lse-91

I 23.46 23 0.32 25.11 18 5.49
II 23.57 23 0.30 24.70 18 5.51
III 23.49 23 0.29 24.81 18 5.45
IV 23.51 23 0.30 24.95 18 5.40
V 23.55 23 0.29 24.80 18 5.51

AVE 23.52 23 0.3 24.87 18 5.47

kfu-93

I 36.12 25 0.41 35.26 20 8.49
II 36.41 25 0.41 35.34 20 7.96
III 36.45 25 0.40 35.19 20 7.92
IV 36.54 25 0.40 35.30 20 8.02
V 36.13 25 0.41 35.43 20 8.02

AVE 36.33 25 0.41 35.30 20 8.08
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